Artigo em revista científica Q2
Named entity recognition for sensitive data discovery in Portuguese
Mariana Dias (Dias, M. ); João boné (Boné, J.); Joao C Ferreira or Joao Ferreira (Ferreira, J.); Ricardo Ribeiro (Ribeiro, R.); Rui Maia (Maia, R.);
Título Revista
Applied Sciences
Ano (publicação definitiva)
2020
Língua
Inglês
País
Suíça
Mais Informação
Web of Science®

N.º de citações: 24

(Última verificação: 2024-11-27 18:00)

Ver o registo na Web of Science®


: 3.0
Scopus

N.º de citações: 28

(Última verificação: 2024-11-25 23:35)

Ver o registo na Scopus


: 2.3
Google Scholar

N.º de citações: 42

(Última verificação: 2024-11-27 18:28)

Ver o registo no Google Scholar

Abstract/Resumo
The process of protecting sensitive data is continually growing and becoming increasingly important, especially as a result of the directives and laws imposed by the European Union. The effort to create automatic systems is continuous, but, in most cases, the processes behind them are still manual or semi-automatic. In this work, we have developed a component that can extract and classify sensitive data, from unstructured text information in European Portuguese. The objective was to create a system that allows organizations to understand their data and comply with legal and security purposes. We studied a hybrid approach to the problem of Named Entity Recognition for the Portuguese language. This approach combines several techniques such as rule-based/lexical-based models, machine learning algorithms, and neural networks. The rule-based and lexical-based approaches were used only for a set of specific classes. For the remaining classes of entities, two statistical models were tested—Conditional Random Fields and Random Forest and, finally, a Bidirectional-LSTM approach as experimented. Regarding the statistical models, we realized that Conditional Random Fields is the one that can obtain the best results, with a f1-score of 65.50%. With the Bi-LSTM approach, we have achieved a result of 83.01%. The corpora used for training and testing were HAREM Golden Collection, SIGARRA News Corpus, and DataSense NER Corpus.
Agradecimentos/Acknowledgements
--
Palavras-chave
Sensitive data,General data protection regulation,Natural language processing,Portuguese language,Named entity recognition
  • Ciências da Computação e da Informação - Ciências Naturais
  • Ciências Físicas - Ciências Naturais
  • Ciências Químicas - Ciências Naturais
  • Outras Ciências Naturais - Ciências Naturais
  • Engenharia Civil - Engenharia e Tecnologia
  • Engenharia Química - Engenharia e Tecnologia
  • Engenharia dos Materiais - Engenharia e Tecnologia