Artigo em revista científica Q1
A conservative approach for online credit scoring
Afshin Ashofteh (Ashofteh, A.); Jorge Miguel Bravo (Bravo, J.);
Título Revista
Expert Systems with Applications
Ano (publicação definitiva)
2021
Língua
Inglês
País
Reino Unido
Mais Informação
Web of Science®

N.º de citações: 40

(Última verificação: 2025-12-22 19:01)

Ver o registo na Web of Science®


: 1.2
Scopus

N.º de citações: 50

(Última verificação: 2025-12-18 18:53)

Ver o registo na Scopus


: 1.3
Google Scholar

N.º de citações: 90

(Última verificação: 2025-12-18 03:08)

Ver o registo no Google Scholar

Esta publicação não está indexada no Overton

Abstract/Resumo
This research is aimed at the case of credit scoring in risk management and presents a novel machine learning method to be used for the default prediction of high-risk branches or customers. This study uses the Kruskal-Wallis non-parametric statistic to form a conservative credit-scoring model and to study the impact on modeling performance on the benefit of the credit provider. The findings show that the new credit scoring methodology represents a reasonable coefficient of determination and a very low false-negative rate. It is computationally less expensive with high accuracy with around 18% improvement in Recall/Sensitivity. Because of the recent perspective of continued credit/behavior scoring, our study suggests using this credit score for non-traditional data sources for online loan providers to allow them to study and reveal changes in client behavior over time and choose the reliable unbanked customers, based on their application data. This is the first study that develops an online non-parametric credit scoring system, which is able to reselect effective features automatically for continued credit evaluation and weigh them out by their level of contribution with a good diagnostic ability.
Agradecimentos/Acknowledgements
--
Palavras-chave
Risk analysis,Online credit scoring,Big Data,Kruskal_Wallis statistic,Open banking,Machine learning
  • Ciências da Computação e da Informação - Ciências Naturais
  • Engenharia Civil - Engenharia e Tecnologia
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
  • Economia e Gestão - Ciências Sociais