Publicação em atas de evento científico
Devising effective novelty search algorithms: A comprehensive empirical study
Jorge Gomes (Gomes, J.); Pedro Mariano ( Mariano, P.); Anders Christensen (Christensen, A. L.);
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
Ano (publicação definitiva)
2015
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®

N.º de citações: 64

(Última verificação: 2024-11-04 01:22)

Ver o registo na Web of Science®

Scopus

N.º de citações: 76

(Última verificação: 2024-11-01 23:34)

Ver o registo na Scopus

Google Scholar

N.º de citações: 120

(Última verificação: 2024-11-01 07:57)

Ver o registo no Google Scholar

Abstract/Resumo
Novelty search is a state-of-the-art evolutionary approach that promotes behavioural novelty instead of pursuing a static objective. Along with a large number of successful applications, many different variants of novelty search have been proposed. It is still unclear, however, how some key parameters and algorithmic components influence the evolutionary dynamics and performance of novelty search. In this paper, we conduct a comprehensive empirical study focused on novelty search’s algorithmic components. We study the k parameter — the number of nearest neighbours used in the computation of novelty scores; the use and function of an archive; how to combine novelty search with fitness-based evolution; and how to configure the mutation rate of the underlying evolutionary algorithm. Our study is conducted in a simulated maze navigation task. Our results show that the configuration of novelty search can have a significant impact on performance and behaviour space exploration. We conclude with a number of guidelines for the implementation and configuration of novelty search, which should help future practitioners to apply novelty search more effectively.
Agradecimentos/Acknowledgements
--
Palavras-chave
Novelty search,Evolutionary robotics,Neuroevolution,Premature convergence,Empirical study
  • Ciências Físicas - Ciências Naturais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UID/EEA/50008/2013 Fundação para a Ciência e a Tecnologia
Projetos Relacionados

Esta publicação é um output do(s) seguinte(s) projeto(s):