Publicação em atas de evento científico
Harvesting the computational power of heterogeneous clusters to accelerate seismic processing
Caian Benedicto (Benedicto, C.); Ian Liu Rodrigues (Rodrigues, I. L.); Martin Tygel (Tygel, M.); Maurício Breternitz (Breternitz, M.); Edson Borin (Borin, E.);
Global Meeting Expanded Abstracts
Ano (publicação definitiva)
2017
Língua
Inglês
País
Brasil
Mais Informação
Web of Science®

Esta publicação não está indexada na Web of Science®

Scopus

Esta publicação não está indexada na Scopus

Google Scholar

N.º de citações: 10

(Última verificação: 2024-12-17 02:58)

Ver o registo no Google Scholar

Abstract/Resumo
Cluster environments are crucial to modern geophysics. Major processing companies make use of one or more computational environments, whether they be in-house clusters or third-party public clouds, to guarantee the efficient execution of their processing flows. But the diversification of such environments created a demand for software tools that are able to scale with efficiency in these ever-increasing ecosystems. Aside from efficiency requirements, these tools must also be able to handle and recover automatically from the faults that arise from these new and complex ecosystems. In this paper, we discuss how we leverage the Scalable Partially Idempotent Tasks System (SPITS) programming model and the PY-PITS runtime system to efficiently harvest the computing power of heterogeneous systems in order to solve geophysics problems. We also present an experiment in which we combine the computational resources from several clusters and workstations simultaneously to perform the regularization of seismic data and demonstrate the scalability and robustness of the system. Read More: https://library.seg.org/doi/abs/10.1190/sbgf2017-070
Agradecimentos/Acknowledgements
--
Palavras-chave
Projetos Relacionados

Esta publicação é um output do(s) seguinte(s) projeto(s):