Artigo em revista científica Q2
Insights from a text mining survey on Expert Systems research from 2000 to 2016
Paulo Cortez (Cortez, P.); Sérgio Moro (Moro, S.); Paulo Rita (Rita, P.); David King (King, D.); Jon Hall (Hall, J.);
Título Revista
Expert Systems
Ano
2018
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®

N.º de citações: 6

(Última verificação: 2020-09-20 02:38)

Ver o registo na Web of Science®


: 2.0
Scopus

N.º de citações: 8

(Última verificação: 2020-09-21 09:54)

Ver o registo na Scopus


: 2.0
Abstract/Resumo
This study presents a literature analysis using a semiautomated text mining and topic modelling approach of the body of knowledge encompassed in 17 years (2000–2016) of literature published in the Wiley's Expert Systems journal, a key reference in Expert Systems (ESs) research, in a total of 488 research articles. The methodological approach included analysing countries from authors' affiliations, with results emphasizing the relevance of both U.S. and U.K. researchers, with Chinese, Turkish, and Spanish holding also a significant relevance. As a result of the sparsity found on the keywords, one of our goals became to devise a taxonomy for future submissions under 2 core dimensions: ESs' methods and ESs' applications. Finally, through topic modelling, data-driven methods were unveiled as the most relevant, pairing with evaluation methods in its application to managerial sciences, arts, and humanities. Findings also show that most of the application domains are well represented, including health, engineering, energy, and social sciences.
Agradecimentos/Acknowledgements
--
Palavras-chave
Expert Systems,Literature analysis,Research categorization,Research evolution,Text mining
  • Ciências da Computação e da Informação - Ciências Naturais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UID/MULTI/0446/2013 Fundação para a Ciência e a Tecnologia
UID/PSI/03125/2013 Fundação para a Ciência e a Tecnologia