Artigo em revista científica Q1
Measuring the congruence of fuzzy partitions in fuzzy c-means clustering
Abdul Suleman (Suleman, A.);
Título Revista
Applied Soft Computing
Ano
2017
Língua
Inglês
País
Países Baixos (Holanda)
Mais Informação
Web of Science®

N.º de citações: 6

(Última verificação: 2019-02-19 23:59)

Ver o registo na Web of Science®

Scopus

N.º de citações: 6

(Última verificação: 2019-02-19 15:00)

Ver o registo na Scopus

Abstract/Resumo
We propose an internal cluster validity index for a fuzzy c-means algorithm which combines a mathematical model for the fuzzy c-partition and a heuristic search for the number of clusters in the data.Our index resorts to information theoretic principles, and aims to assess the congruence between such a model and the data that have been observed. The optimal cluster solution represents a trade-off between discrepancy and the complexity of the underlying fuzzy c-partition. We begin by testing the effectiveness of the proposed index using two sets of synthetic data, one comprising a well-defined cluster structure and the other containing only noise. Then we use datasets arising from real life problems. Our results are compared to those provided by several available indices and their goodness is judged by an external measure of similarity. We find substantial evidence supporting our index as a credible alternative to the cluster validation problem, especially when it concerns structureless data.
Palavras-chave
Fuzzy clustering,Fuzzy c-means,Reconstruction,Cluster validity index,Information criterion
  • Ciências da computação e da informação - Ciências Naturais