Artigo em revista científica Q3
Modeling stock markets' volatility using GARCH models with normal, Student's t and stable Paretian distributions
José Curto (Curto, J.); José Pinto (Pinto, J. C.); Gonçalo Nuno Tavares (Tavares, G. N.);
Título Revista
Statistical Papers
Ano (publicação definitiva)
2009
Língua
Inglês
País
Alemanha
Mais Informação
Web of Science®

N.º de citações: 41

(Última verificação: 2024-11-19 20:35)

Ver o registo na Web of Science®


: 2.7
Scopus

N.º de citações: 36

(Última verificação: 2024-11-15 15:20)

Ver o registo na Scopus


: 2.3
Google Scholar

Esta publicação não está indexada no Google Scholar

Abstract/Resumo
As GARCH models and stable Paretian distributions have been revisited in the recent past with the papers of Hansen and Lunde (J Appl Econom 20: 873–889, 2005) and Bidarkota and McCulloch (Quant Finance 4: 256–265, 2004), respectively, in this paper we discuss alternative conditional distributional models for the daily returns of the US, German and Portuguese main stock market indexes, considering ARMA-GARCH models driven by Normal, Student’s t and stable Paretian distributed innovations. We find that a GARCH model with stable Paretian innovations fits returns clearly better than the more popular Normal distribution and slightly better than the Student’s t distribution. However, the Student’s t outperforms the Normal and stable Paretian distributions when the out-of-sample density forecasts are considered.
Agradecimentos/Acknowledgements
--
Palavras-chave
Non-Gaussian distributions,Conditional heteroskedasticity
  • Matemáticas - Ciências Naturais