Artigo em revista científica Q1
Precise water leak detection using machine learning and real-time sensor data
João Alves Coelho (Coelho, J. A.); André Glória (Glória, A.); Pedro Sebastião (Sebastião, P.);
Título Revista
IoT
Ano (publicação definitiva)
2020
Língua
Inglês
País
Suíça
Mais Informação
Web of Science®

N.º de citações: 41

(Última verificação: 2025-12-18 03:16)

Ver o registo na Web of Science®


: 14.6
Scopus

N.º de citações: 59

(Última verificação: 2025-12-15 23:05)

Ver o registo na Scopus


: 3.3
Google Scholar

N.º de citações: 70

(Última verificação: 2025-03-22 10:02)

Ver o registo no Google Scholar

Esta publicação não está indexada no Overton

Abstract/Resumo
Water is a crucial natural resource, and it is widely mishandled, with an estimated one third of world water utilities having loss of water of around 40% due to leakage. This paper presents a proposal for a system based on a wireless sensor network designed to monitor water distribution systems, such as irrigation systems, which, with the help of an autonomous learning algorithm, allows for precise location of water leaks. The complete system architecture is detailed, including hardware, communication, and data analysis. A study to discover the best machine learning algorithm between random forest, decision trees, neural networks, and Support Vector Machine (SVM) to fit leak detection is presented, including the methodology, training, and validation as well as the obtained results. Finally, the developed system is validated in a real-case implementation that shows that it is able to detect leaks with a 75% accuracy.
Agradecimentos/Acknowledgements
--
Palavras-chave
Internet of things,Green tech,Machine learning,Sustainability,Water leaks,Efficiency,Water management
  • Ciências da Computação e da Informação - Ciências Naturais
  • Engenharia Civil - Engenharia e Tecnologia
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia