Scientific journal paper Q1
Predicting tail risks and the evolution of temperatures
Anthoulla Phella (Anthoulla Phella); Vasco J. Gabriel (Gabriel, V. J.); Luís Martins (Martins, L. F.);
Journal Title
Energy Economics
Year (definitive publication)
2024
Language
English
Country
Netherlands
More Information
Web of Science®

Times Cited: 0

(Last checked: 2024-11-20 16:33)

View record in Web of Science®

Scopus

Times Cited: 0

(Last checked: 2024-11-15 13:48)

View record in Scopus

Google Scholar

Times Cited: 1

(Last checked: 2024-11-17 14:11)

View record in Google Scholar

Abstract
This paper explores a range of simple models to study the relationship between global temperature anomalies and climate forcings. In particular, we consider quantile regression models with potentially time-varying parameters (TVP), implemented by Bayesian methods. In its most general specification, this approach is flexible in that it models distinct regions of distribution of global temperature anomalies, while also allowing us to investigate changes in the relationship between (natural and anthropogenic) climate forcings and temperatures. Our results indicate that there is indeed considerable variation over time in the relationship between temperatures and its drivers, and that these effects may be heterogeneous across different quantiles. We then perform a long-range forecasting exercise for temperatures, which suggests that incorporating TVP or explicitly modelling quantile levels or the combination of both features can improve prediction for different parts of the temperature distribution. In addition, we produce forecasts for 2030 considering the intermediate RCP 4.5 scenario: given that no single specification dominates, we account for model uncertainty by considering forecast averaging across all specifications. Our approach allows us to make statements about the probability of temperature levels — for instance, we find that a scenario of +1.8 °C will occur with a non-negligible probability under RCP 4.5.
Acknowledgements
--
Keywords
Quantile regression,Time-varying parameters,Global temperature distributions,Forecast averaging
  • Other Natural Sciences - Natural Sciences
  • Economics and Business - Social Sciences

With the objective to increase the research activity directed towards the achievement of the United Nations 2030 Sustainable Development Goals, the possibility of associating scientific publications with the Sustainable Development Goals is now available in Ciência-IUL. These are the Sustainable Development Goals identified by the author(s) for this publication. For more detailed information on the Sustainable Development Goals, click here.