Ciência-IUL
Publicações
Descrição Detalhada da Publicação
ESANN 2022 proceedings
Ano (publicação definitiva)
2022
Língua
Inglês
País
--
Mais Informação
Web of Science®
Esta publicação não está indexada na Web of Science®
Scopus
Esta publicação não está indexada na Scopus
Google Scholar
Abstract/Resumo
Weightless neural networks (WNNs) are a type of machine learning model which perform prediction using lookup tables (LUTs) instead of arithmetic operations. Recent advancements in WNNs have reduced model sizes and improved accuracies, reducing the gap in accuracy with deep neural networks (DNNs). Modern DNNs leverage “pruning” techniques to reduce model size, but this has not previously been explored for WNNs. We propose a WNN pruning strategy based on identifying and culling the LUTs which contribute least to overall model accuracy. We demonstrate an average 40% reduction in model size with at most 1% reduction in accuracy.
Agradecimentos/Acknowledgements
--
Palavras-chave
Classificação Fields of Science and Technology
- Ciências da Computação e da Informação - Ciências Naturais
Registos de financiamentos
Referência de financiamento | Entidade Financiadora |
---|---|
3015.001/3016.00 | Semiconductor Research Corporation |
POCI-01-0247-FEDER-045912 | FEDER |
UIDP/04466/2020 | Fundação para a Ciência e a Tecnologia |
UIDB/04466/2020 | Fundação para a Ciência e a Tecnologia |
Projetos Relacionados
Esta publicação é um output do(s) seguinte(s) projeto(s):