Publicação em atas de evento científico
Sentiment analysis in online reviews classification using text mining technique
Águeda Moreno (Moreno, A.); Paulo Rita (Rita, P.); João Guerreiro (Guerreiro, J.);
2019 14th Iberian Conference on Information Systems and Technologies (CISTI)
Ano
2019
Língua
Português
País
Portugal
Mais Informação
Web of Science®

N.º de citações: 0

(Última verificação: 2020-03-29 19:55)

Ver o registo na Web of Science®

Scopus

N.º de citações: 0

(Última verificação: 2020-03-28 19:36)

Ver o registo na Scopus

Abstract/Resumo
The growth of social media in recent years has led to an increase in online reviews that reflects consumer opinions. Firms benefit greatly from making this information available in order to respond more effectively to consumer dissatisfaction and to exploit market opportunities by observing standards that may represent unsatisfied needs. The present study aims to address this problem through a survey based on the Yelp platform. To this end, 14,000 comments related to different tourism products were used and text mining techniques and topic models were applied to find the main latent topics discussed in the online comments and their associated sentiments. The study presents 20 latent topics from online discussions and reveals that the topic that discusses “Air Travel” themes is the one with a lower sentiment connotation on average and should therefore be the subject of a deeper evaluation.
Agradecimentos/Acknowledgements
--
Palavras-chave
Text mining,Online reviews,Sentiments analysis,Natural language processing,Topic models
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UID/MULTI/0446/2013 Fundação para a Ciência e a Tecnologia
UID/GES/00315/2013 Fundação para a Ciência e a Tecnologia