Artigo em revista científica Q1
The mixed capacitated arc routing problem with non-overlapping routes
Miguel Fragoso Constantino (Constantino, M.); Luís Gouveia (Gouveia, L.); Maria Cândida Mourão (Mourão, M. C.); Ana Catarina Nunes (Nunes, A. C.);
Título Revista
European Journal of Operational Research
Ano (publicação definitiva)
2015
Língua
Inglês
País
Países Baixos (Holanda)
Mais Informação
Web of Science®

N.º de citações: 36

(Última verificação: 2024-11-22 02:29)

Ver o registo na Web of Science®


: 0.9
Scopus

N.º de citações: 35

(Última verificação: 2024-11-22 06:56)

Ver o registo na Scopus


: 0.7
Google Scholar

N.º de citações: 57

(Última verificação: 2024-11-22 00:24)

Ver o registo no Google Scholar

Abstract/Resumo
Real world applications for vehicle collection or delivery along streets usually lead to arc routing problems, with additional and complicating constraints. In this paper we focus on arc routing with an additional constraint to identify vehicle service routes with a limited number of shared nodes, i.e. vehicle service routes with a limited number of intersections. This constraint leads to solutions that are better shaped for real application purposes. We propose a new problem, the bounded overlapping MCARP (BCARP), which is defined as the mixed capacitated arc routing problem (MCARP) with an additional constraint imposing an upper bound on the number of nodes that are common to different routes. The best feasible upper bound is obtained from a modified MCARP in which the minimization criteria is given by the overlapping of the routes. We show how to compute this bound by solving a simpler problem. To obtain feasible solutions for the bigger instances of the KARP heuristics are also proposed. Computational results taken from two well known instance sets show that, with only a small increase in total time traveled, the model BCARP produces solutions that are more attractive to implement in practice than those produced by the MCARP model
Agradecimentos/Acknowledgements
--
Palavras-chave
Routing,Integer linear programming,Heuristics,District design,Capacitated arc routing
  • Economia e Gestão - Ciências Sociais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
PEst-OE/MAT/UI0152/2013 Fundação para a Ciência e a Tecnologia
PTDC/EGE-GES/121406/2010 Fundação para a Ciência e a Tecnologia