1) Development of Enhanced Light Field Representation Solutions – To enable real-time streaming of Light Field (LF) content, flexible LF coded representations will be investigated, aiming to manage the massive amount of data involved and to predict the user’s movement in a fully immersive experience. For this purpose, scalable LF coding solutions will be developed aiming at supporting random access and region-of-interest (ROI) coding with high coding efficiency.
2) Development of Light Field Processing Tools – The different LF capturing approaches have different spatio-angular tradeoffs and may suffer from low spatial resolution, limited depth-of-field, or high computational complexity. To overcome such limitations, advanced algorithms that can estimate accurate geometry information, create 3D models from LFs, and synthesize spatial/angular super-resolved images with high quality and efficiency are needed. To this aim, efficient LF geometry estimation and virtual view synthesis algorithms beyond conventional multi-view approaches will be investigated. Tools like segmentation and inpainting, that may especially useful for interactive LF editing, will also be considered.
3) Development of Efficient Packaging Solutions for Light Field Streaming – Ultra-realistic scene rendering from LFs is a very appealing functionality for future interactive and immersive streaming services. One reason for this is the decoupling of computational cost of scene rendering from the rendered scene complexity, contrary to what happens in computer-generated 3D scenes. However, LF imaging requires a huge amount of data for proper scene rendering. To enable interactive LF rendering without requiring the whole LF to be available at the receiver, efficient packaging of the encoded LF content is needed. This would allow restricting network delivery to only the subset of the LF image that is needed to reconstruct the required view. For this to be done in an efficient way, adequate prediction mechanisms for view switching must be investigated. A possible starting point is to convert the LF into a pseudo-video sequence and segment it using the MPEG-DASH approach.
Funding: FCT; Reference: PTDC/EEI-COM/7096/2020,
Centro de Investigação | Grupo de Investigação | Papel no Projeto | Data de Início | Data de Fim |
---|---|---|---|---|
IT-Iscte | -- | Parceiro | 2021-03-01 | 2024-02-29 |
Instituição | País | Papel no Projeto | Data de Início | Data de Fim |
---|---|---|---|---|
Instituto de Telecomunicações (IT) | Portugal | Líder | 2021-03-01 | 2024-02-29 |
Nome | Afiliação | Papel no Projeto | Data de Início | Data de Fim |
---|---|---|---|---|
Caroline Conti | Professora Auxiliar (DCTI); Investigadora Associada (IT-Iscte); | Coordenadora Local | 2021-03-01 | 2024-02-29 |
Luís Ducla Soares | Professor Associado (com Agregação) (DCTI); Investigador Integrado (IT-Iscte); | Investigador Responsável | 2021-03-01 | 2024-02-29 |
Paulo Jorge Lourenço Nunes | Professor Associado (DCTI); Investigador Integrado (IT-Iscte); | Investigador | 2021-03-01 | 2024-02-29 |
Código/Referência | DOI do Financiamento | Tipo de Financiamento | Programa de Financiamento | Valor Financiado (Global) | Valor Financiado (Local) | Data de Início | Data de Fim |
---|---|---|---|---|---|---|---|
PTDC/EEI-COM/7096/2020 | -- | Contrato | FCT/MCTS - -- - Portugal | 160285 | 160285 | 2021-03-01 | 2024-02-29 |
Ano | Tipo de publicação | Referência Completa |
---|---|---|
2022 | Publicação em atas de evento científico | Hamad, M., Conti, C., Nunes, P. & Soares, L. D. (2022). View-consistent 4D Light Field style transfer using neural networks and over-segmentation. In 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). Nafplio: IEEE. |
2021 | Artigo em revista científica | Monteiro, R. J. S., Rodrigues, N. M. M., Faria, S. M. M. & Nunes, P. J. L. (2021). Light field image coding with flexible viewpoint scalability and random access. Signal Processing: Image Communication. 94 |
2021 | Artigo em revista científica | Hamad, M., Conti, C., Nunes, P. & Soares, L. D. (2021). ALFO: Adaptive light field over-segmentation. IEEE Access. 9, 131147-131165 |
Não foram encontrados registos.
Não foram encontrados registos.
Não foram encontrados registos.
Não foram encontrados registos.