Ciência-IUL
Publicações
Descrição Detalhada da Publicação
Contextual factors predicting compliance behavior during the COVID-19 pandemic: A machine learning analysis on survey data from 16 countries
Título Revista
PLoS One
Ano (publicação definitiva)
2022
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®
Scopus
Google Scholar
Abstract/Resumo
Voluntary isolation is one of the most effective methods for individuals to help prevent the transmission of diseases such as COVID-19. Understanding why people leave their homes when advised not to do so and identifying what contextual factors predict this non-compliant behavior is essential for policymakers and public health officials. To provide insight on these factors, we collected data from 42,169 individuals across 16 countries. Participants responded to items inquiring about their socio-cultural environment, such as the adherence of fellow citizens, as well as their mental states, such as their level of loneliness and boredom. We trained random forest models to predict whether someone had left their home during a one-week period during which they were asked to voluntarily isolate themselves. The analyses indicated that overall, an increase in the feeling of being caged leads to an increased probability of leaving home. In addition, an increased feeling of responsibility and an increased fear of getting infected decreased the probability of leaving home. The models predicted compliance behavior with between 54% and 91% accuracy within each country’s sample. In addition, we modeled factors leading to risky behavior in the pandemic context. We observed an increased probability of visiting risky places as both the anticipated number of people and the importance of the activity increased. Conversely, the probability of visiting risky places increased as the perceived putative effectiveness of social distancing decreased. The variance explained in our models predicting risk ranged from < .01 to .54 by country. Together, our findings can inform behavioral interventions to increase adherence to lockdown recommendations in pandemic conditions.
Agradecimentos/Acknowledgements
--
Palavras-chave
Classificação Fields of Science and Technology
- Psicologia - Ciências Sociais
Registos de financiamentos
Referência de financiamento | Entidade Financiadora |
---|---|
NKFIH-1157-8/2019-DT | Agentúra na Podporu Výskumu a Vývoja |
APVV-17-0418 | Agentúra na Podporu Výskumu a Vývoja |
UID/PSI/03125/2020 | Fundação para a Ciência e a Tecnologia |
APVV-20-0319 | Agentúra na Podporu Výskumu a Vývoja |
UMO-2019/35/B/HS6/00528 | Narodowym Centrum Nauki |
BME-NVA-02 | Narodowym Centrum Nauki |
PRIMUS/20/HUM/009 | Fundação para a Ciência e a Tecnologia |
Contribuições para os Objetivos do Desenvolvimento Sustentável das Nações Unidas
Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.