Ciência-IUL
Publications
Publication Detailed Description
Dendrite-inspired computing to improve resilience of neural networks to faults in emerging memory technologies
2023 IEEE International Conference on Rebooting Computing (ICRC)
Year (definitive publication)
2023
Language
English
Country
United States of America
More Information
Web of Science®
This publication is not indexed in Web of Science®
Scopus
Google Scholar
Abstract
Mimicking biological neurons by focusing on the excitatory/inhibitory decoding performed by dendritic trees offers an intriguing alternative to the traditional integrate-and-fire McCullogh-Pitts neuron stylization. Weightless Neural Networks (WNN), which rely on value lookups from tables, emulate the integration process in dendrites and have demonstrated notable advantages in terms of energy efficiency. In this paper, we delve into the WNN paradigm from the perspective of reliability and fault tolerance. Through a series of fault injection experiments, we illustrate that WNNs exhibit remarkable resilience to both transient (soft) errors and permanent faults. Notably, WNN models experience minimal deterioration in accuracy even when subjected to fault rates of up to 5%. This resilience makes them well-suited for implementation in emerging memory technologies for binary or multiple bits-per-cell storage with reduced reliance on memory block-level error resilience features. By offering a novel perspective on neural network modeling and highlighting the robustness of WNNs, this research contributes to the broader understanding of fault tolerance in neural networks, particularly in the context of emerging memory technologies.
Acknowledgements
--
Keywords
Fields of Science and Technology Classification
- Computer and Information Sciences - Natural Sciences
Funding Records
Funding Reference | Funding Entity |
---|---|
#2326894 | National Science Foundation (NSF) |
UIDB/50008/2020 | Fundação para a Ciência e a Tecnologia |
DSAIPA/AI/0122/2020 | Fundação para a Ciência e a Tecnologia |
UIDP/04466/2020 | Fundação para a Ciência e a Tecnologia |
UIDB/04466/2020 | Fundação para a Ciência e a Tecnologia |
#C645463824-00000063 | Comissão Europeia |
#2326895 | National Science Foundation (NSF) |
Related Projects
This publication is an output of the following project(s):
Contributions to the Sustainable Development Goals of the United Nations
With the objective to increase the research activity directed towards the achievement of the United Nations 2030 Sustainable Development Goals, the possibility of associating scientific publications with the Sustainable Development Goals is now available in Ciência-IUL. These are the Sustainable Development Goals identified by the author(s) for this publication. For more detailed information on the Sustainable Development Goals, click here.