Ciência_Iscte
Publications
Publication Detailed Description
Early Detection of At-Risk University Students Using Machine Learning: a Study of Model Performance in Evolving Academic Environments
EDULEARN 2025
Year (definitive publication)
2025
Language
English
Country
Spain
More Information
Web of Science®
This publication is not indexed in Web of Science®
Scopus
This publication is not indexed in Scopus
Google Scholar
This publication is not indexed in Overton
Abstract
This study explores the early detection of at-risk students using machine learning (ML) models trained on historical academic data. We constructed two datasets from university enrollment records spanning the 2016/2017 to 2022/2023 academic years, focusing on first-time enrollees in their first curricular year. The first dataset included only pre-enrollment information available at the start of the academic year, while the second incorporated first-semester performance data. Each dataset was used to predict two target outcomes: academic success and dropout. We evaluated multiple ML models, including Random Forest, Support Vector Machine (SVM), Naïve Bayes, Decision Tree, AdaBoost, K-Nearest Neighbors (KNN), and Logistic Regression. To optimize model performance, we employed Optuna for hyperparameter tuning, conducting hundreds of trials per algorithm. The best-performing models were tested on two datasets: one from historical student data (2016/2017–2022/2023) and another from the 2023/2024 academic year, reflecting a real-world shift due to a newly implemented university intervention strategy aimed at providing personalized support for at-risk students. Although the intervention itself was not included as a model variable, it may have influenced student success and dropout rates in 2023/2024, potentially impacting model predictions. By comparing performance on pre- and post-intervention data, this study assesses the robustness and generalizability of ML-based early warning systems in dynamically evolving academic environments.
Acknowledgements
--
Keywords
Machine Learning,Early Warning Systems,Student Dropout Prediction,Academic Performance Analysis,Intervention Impact.
Fields of Science and Technology Classification
- Computer and Information Sciences - Natural Sciences
- Educational Sciences - Social Sciences
Contributions to the Sustainable Development Goals of the United Nations
With the objective to increase the research activity directed towards the achievement of the United Nations 2030 Sustainable Development Goals, the possibility of associating scientific publications with the Sustainable Development Goals is now available in Ciência_Iscte. These are the Sustainable Development Goals identified by the author(s) for this publication. For more detailed information on the Sustainable Development Goals, click here.
Português