Publicação em atas de evento científico
Evaluating energy performance certificate data with data science
Maria Anastasiadou (Maria Anastasiadou); Vitor Santos (Santos, V.); Miguel Sales Dias (Dias, M. S.);
2021 International Conference on Electrical, Computer and Energy Technologies (ICECET)
Ano (publicação definitiva)
2021
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®

N.º de citações: 1

(Última verificação: 2024-11-22 22:02)

Ver o registo na Web of Science®

Scopus

N.º de citações: 0

(Última verificação: 2024-11-20 23:43)

Ver o registo na Scopus

Google Scholar

N.º de citações: 0

(Última verificação: 2024-11-21 20:20)

Ver o registo no Google Scholar

Abstract/Resumo
The related problems of improving existing buildings' energy performance, reducing energy consumption, and improving indoor comfort and their many consequences are well known. Considering increasing urbanization and climate change, governments define strategies to enhance and measure buildings' energy performance and energy efficiency. This work aims to contribute to the improvement of buildings' characteristics by conducting a thorough systematic literature review and adopting a data science approach to these problems, presenting initial results with an open-access energy performance certificate dataset from the Lombardy Region, in Italy. We provide a pre-processing method to the data, applicable for future research, aiming to address challenges such as automatic classification of existing buildings' energy performance certification, and predicting energy-efficient retrofit measures, using machine learning techniques. The analysis of this dataset is challenging because of the high variability and dimensionality of this dataset. For this purpose, a robust iterative process was developed. First, the data dimensionality was reduced with Pearson Correlation to find the best set of variables against the non-renewable global energy performance index (EPgl, nren). Then, the outliers were handled by utilizing Box Plot and Isolation Forest algorithms. The main contribution is to inform private and public building sectors on dealing with high dimensional data to achieve enhanced energy performance and predict energy-efficient retrofit measures to improve their energy performance.
Agradecimentos/Acknowledgements
We wish to thank Ricardo Pinto and Vitória Albuquerque for their assistance in reviewing the paper. The authors would also like to thank the editorial team and the reviewers who offered constructive and helpful remarks to enhance the quality of the paper
Palavras-chave
Energy performance of buildings,Energy performance certification,Machine learning,Prediction of retrofitting measures
  • Ciências da Computação e da Informação - Ciências Naturais
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia

Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.