Publicação em atas de evento científico
Examination of unremitting kidney illness by utilizing machine learning classifiers
Fareeha Sarwar (Sarwar, F.); Nuno Miguel de Figueiredo Garrido (Garrido, N.); Pedro Sebastião (Sebastião, P.); Akmal Rehan (Rehan, A.);
International Conferences on ICT, Society and Human Beings 2023, e-Health 2023, Connected Smart Cities 2023, and Big Data Analytics, Data Mining and Computational Intelligence 2023: Part of the Multi Conference on Computer Science and Information Systems 2023
Ano (publicação definitiva)
2023
Língua
Inglês
País
--
Mais Informação
Web of Science®

Esta publicação não está indexada na Web of Science®

Scopus

Esta publicação não está indexada na Scopus

Google Scholar

N.º de citações: 0

(Última verificação: 2024-11-17 17:33)

Ver o registo no Google Scholar

Abstract/Resumo
Chronic kidney disease is a rising health issue that affects millions of people worldwide. Early detection and characterization of this disease is essential for effective management and control. This disease is associated with several serious health risks, such as cardiovascular disease, increased risk of stroke, and end-stage renal disease, which can be effectively prevented by early detection and treatment. Medical scientists rely on machine learning algorithms to diagnose the disease accurately at its outset. Recently, adding value to healthcare is being accomplished through the integration of machine learning algorithms into mobile health solution. Considering this, this paper proposes a predictive model of three machine learning classifiers, including Support Vector Machine, Decision Tree, and Multilayer Perceptron for chronic kidney disease prediction. The performance of the model was assessed using confusion matrix and executed in popular machine learning software tools such as WEKA and Rapid Minor. The study found that support vector machine yielded the highest accuracy rate of 98% in predicting chronic kidney disease in WEKA among other standard classifiers by using 10-fold cross validation. In addition, the proposed prediction model has been compared with existing models in terms of accuracy, sensitivity, and specificity. The experimental results indicate that the proposed predictive model shows promising results. These findings could integrate with the development of mobile health solution and other innovative approaches to prevent and treat this debilitating condition.
Agradecimentos/Acknowledgements
IT-IUL
Palavras-chave
Machine learning classifiers,Chronic kidney disease,WEKA,Rapid minor,Mobile health solution
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
  • Engenharia Médica - Engenharia e Tecnologia

Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.