Ciência-IUL
Publicações
Descrição Detalhada da Publicação
Título Revista
Applied Sciences
Ano (publicação definitiva)
2022
Língua
Inglês
País
Suíça
Mais Informação
Web of Science®
Scopus
Google Scholar
Esta publicação não está indexada no Google Scholar
Abstract/Resumo
The application of anomaly-monitoring and surveillance systems is crucial for improving maritime situational awareness. These systems must work on the fly in order to provide the operator with information on potentially dangerous or illegal situations as they are occurring. We present a system for identifying vessels deviating from their normal course of travel, from unlabelled AIS data. Our approach attempts to solve problems with scalability and on-line learning of other grid-based systems available in the literature, by applying a dynamic grid size, adjustable per vessel characteristics, combined with a binary-search tree method for data discretization and vessel grid search. The results of this study have been validated during the Portuguese Maritime Trial in April 2022, conducted by the Portuguese navy along the southern coast of Portugal.
Agradecimentos/Acknowledgements
--
Palavras-chave
Vessel trajectories,Anomaly detection,Maritime security
Classificação Fields of Science and Technology
- Ciências da Computação e da Informação - Ciências Naturais
Registos de financiamentos
Referência de financiamento | Entidade Financiadora |
---|---|
883374 | Comissão Europeia |
Contribuições para os Objetivos do Desenvolvimento Sustentável das Nações Unidas
Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.