Ciência-IUL
Publicações
Descrição Detalhada da Publicação
Memory-efficient DRASiW models
Título Revista
Neurocomputing
Ano (publicação definitiva)
2024
Língua
Inglês
País
Reino Unido
Mais Informação
Web of Science®
Scopus
Google Scholar
Abstract/Resumo
Weightless Neural Networks (WNN) are ideal for Federated Learning due to their robustness and computational efficiency. These scenarios require models with a small memory footprint and the ability to aggregate knowledge from multiple models. In this work, we demonstrate the effectiveness of using Bloom filter variations to implement DRASiW models—an adaptation of WNN that records both the presence and frequency of patterns—with minimized memory usage. Across various datasets, DRASiW models show competitive performance compared to models like Random Forest, -Nearest Neighbors, Multi-layer Perceptron, and Support Vector Machines, with an acceptable space trade-off. Furthermore, our findings indicate that Bloom filter variations, such as Count Min Sketch, can reduce the memory footprint of DRASiW models by up to 27% while maintaining performance and enabling distributed and federated learning strategies.
Agradecimentos/Acknowledgements
This work was partially supported by Fundação para a Ciência e a Tecnologia, I.P. (FCT) [ISTAR Projects: UIDB/04466/2020 and UIDP/04466/2020] and DSAIPA/AI/0122/2020 Aim Health. The authors would also like to thank CNPq (404087/2021-3 and 315399/2023-6)
Palavras-chave
Bloom filters,DRASiW,Knowledge aggregation,Weightless neural network
Classificação Fields of Science and Technology
- Ciências da Computação e da Informação - Ciências Naturais
Registos de financiamentos
Referência de financiamento | Entidade Financiadora |
---|---|
UIDP/04466/2020 | Fundação para a Ciência e a Tecnologia |
2013/08293-7 | Fapesp |
04087/2021-3 | CNPq |
DSAIPA/AI/0122/2020 | Fundação para a Ciência e a Tecnologia |
UIDB/04466/2020 | Fundação para a Ciência e a Tecnologia |
315399/2023-6 | CNPq |
Projetos Relacionados
Esta publicação é um output do(s) seguinte(s) projeto(s):