Ciência_Iscte
Publications
Publication Detailed Description
Procedia Computer Science
Year (definitive publication)
2024
Language
English
Country
Netherlands
More Information
Web of Science®
Scopus
Google Scholar
This publication is not indexed in Overton
Abstract
This paper describes a suggested prototype to carry out the automatic classification of requests from a Port Help Desk. It intents to ascertain if the implementation of this framework is viable for this sector. For this purpose different models were employed, such as SVM, Decision Tree, Random Forest, LSTM, BERT and a SVM hierarchical model. To verify their efficiency these models were evaluated using Precision, Recall and F1-Score metrics. We obtained F1-Scores of 94.36% and 92.48% when classifying the request’s category and group respectively. A F1-Score of 93.41% while using a SVM model for category classification when employing a hierarchical classification architecture.
Acknowledgements
--
Keywords
NLP,Request classification,Help desk,Machine learning,Port systems
Fields of Science and Technology Classification
- Computer and Information Sciences - Natural Sciences
Contributions to the Sustainable Development Goals of the United Nations
With the objective to increase the research activity directed towards the achievement of the United Nations 2030 Sustainable Development Goals, the possibility of associating scientific publications with the Sustainable Development Goals is now available in Ciência_Iscte. These are the Sustainable Development Goals identified by the author(s) for this publication. For more detailed information on the Sustainable Development Goals, click here.
Português