Artigo em revista científica Q1
To err is robotic, to tolerate immunological: fault detection in multirobot systems
Danesh Tarapore (Tarapore, D.); Pedro Lima (Lima, P.); Jorge Carneiro (Carneiro, J.); Anders Christensen (Christensen, A. L.);
Título Revista
Bioinspiration and Biomimetics
Ano (publicação definitiva)
2015
Língua
Inglês
País
Reino Unido
Mais Informação
Web of Science®

N.º de citações: 29

(Última verificação: 2024-11-04 11:17)

Ver o registo na Web of Science®


: 1.1
Scopus

N.º de citações: 33

(Última verificação: 2024-10-31 13:58)

Ver o registo na Scopus


: 1.1
Google Scholar

N.º de citações: 46

(Última verificação: 2024-11-01 07:57)

Ver o registo no Google Scholar

Abstract/Resumo
Fault detection and fault tolerance represent two of the most important and largely unsolved issues in the field of multirobot systems (MRS). Efficient, long-term operation requires an accurate, timely detection, and accommodation of abnormally behaving robots. Most existing approaches to fault-tolerance prescribe a characterization of normal robot behaviours, and train a model to recognize these behaviours. Behaviours unrecognized by the model are consequently labelled abnormal or faulty. MRS employing these models do not transition well to scenarios involving temporal variations in behaviour (e.g., online learning of new behaviours, or in response to environment perturbations). The vertebrate immune system is a complex distributed system capable of learning to tolerate the organism's tissues even when they change during puberty or metamorphosis, and to mount specific responses to invading pathogens, all without the need of a genetically hardwired characterization of normality. We present a generic abnormality detection approach based on a model of the adaptive immune system, and evaluate the approach in a swarm of robots. Our results reveal the robust detection of abnormal robots simulating common electro-mechanical and software faults, irrespective of temporal changes in swarm behaviour. Abnormality detection is shown to be scalable in terms of the number of robots in the swarm, and in terms of the size of the behaviour classification space.
Agradecimentos/Acknowledgements
--
Palavras-chave
Adaptive immune system,Artificial immune system,Crossregulation model,Decentralized control,Multirobot systems,Scalable fault detection,Swarm robotics
  • Outras Engenharias e Tecnologias - Engenharia e Tecnologia
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
  • Biotecnologia Industrial - Engenharia e Tecnologia
Registos de financiamentos
Referência de financiamento Entidade Financiadora
PTDC/EEA-CRO/104658/2008 Fundação para a Ciência e a Tecnologia
PEst-OE/EEI/LA0009/2013 Fundação para a Ciência e a Tecnologia
EXPL/EEI-AUT/0329/2013 Fundação para a Ciência e a Tecnologia
Projetos Relacionados

Esta publicação é um output do(s) seguinte(s) projeto(s):