Ciência-IUL
Publicações
Descrição Detalhada da Publicação
SIGraDi 2022: Critical Appropriations
Ano (publicação definitiva)
2022
Língua
Inglês
País
Peru
Mais Informação
Web of Science®
Esta publicação não está indexada na Web of Science®
Scopus
Esta publicação não está indexada na Scopus
Google Scholar
Abstract/Resumo
Participatory models of urban regeneration have been increasingly integrated in local agendas. Yet there is still a need for evaluation methodologies of those models and their impact. This paper presents a data-driven and computational methodology to measure the impact of the BIP/ZIP Program in Lisbon. Using qualitative coding, data
integration, unsupervised machine learning models for data clustering and interactive visualization dashboards the study aims to explore the large and complex dataset of the projects of the BIP/ZIP program and identify correlation patterns between their areas of implementation, the networks of project partners and the identified activities of the
projects. The proposed methodology is a first step towards the development of a generalizable evaluation framework for participatory models and aims to inform the further development of similar participatory models of urban regeneration.
Agradecimentos/Acknowledgements
--
Palavras-chave
Participatory strategies,Participation evaluation,Data-driven evaluation,Unsupervised learning,Data visualization
Registos de financiamentos
Referência de financiamento | Entidade Financiadora |
---|---|
956082 | Comissão Europeia |
Projetos Relacionados
Esta publicação é um output do(s) seguinte(s) projeto(s):