Publicação em atas de evento científico
View-consistent 4D Light Field style transfer using neural networks and over-segmentation
Maryam Hamad (Hamad, M.); Caroline Conti (Conti, C.); Paulo Nunes (Nunes, P.); Luís Ducla Soares (Soares, L. D.);
2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP)
Ano (publicação definitiva)
2022
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®

N.º de citações: 0

(Última verificação: 2024-11-21 15:11)

Ver o registo na Web of Science®

Scopus

N.º de citações: 1

(Última verificação: 2024-11-18 09:31)

Ver o registo na Scopus

Google Scholar

N.º de citações: 1

(Última verificação: 2024-11-22 02:40)

Ver o registo no Google Scholar

Abstract/Resumo
Deep learning has shown promising results in several computer vision applications, such as style transfer applications. Style transfer aims at generating a new image by combining the content of one image with the style and color palette of another image. When applying style transfer to a 4D Light Field (LF) that represents the same scene from different angular perspectives, new challenges and requirements are involved. While the visually appealing quality of the stylized image is an important criterion in 2D images, cross-view consistency is essential in 4D LFs. Moreover, the need for large datasets to train new robust models arises as another challenge due to the limited LF datasets that are currently available. In this paper, a neural style transfer approach is used, along with a robust propagation based on over-segmentation, to stylize 4D LFs. Experimental results show that the proposed solution outperforms the state-of-the-art without any need for training or fine-tuning existing ones while maintaining consistency across LF views.
Agradecimentos/Acknowledgements
This work was funded by FCT/MCTES through national funds under projects UIDB/50008/2020 and PTDC/EEI-COM/7096/2020.
Palavras-chave
Light field,Angular consistency,Deep learning,Neural style transfer,Superpixels
  • Ciências da Computação e da Informação - Ciências Naturais
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UIDB/50008/2020 Fundação para a Ciência e a Tecnologia
PTDC/EEI-COM/7096/2020 Fundação para a Ciência e a Tecnologia
Projetos Relacionados

Esta publicação é um output do(s) seguinte(s) projeto(s):