Capítulo de livro
Applying advanced data analytics and machine learning to enhance the safety control of dams
João Rico (Rico, J.); José Barateiro (Barateiro, J.); Juan Mata (Mata, J.); António Antunes (Antunes, A.); Elsa Cardoso (Cardoso, E.);
Título Livro
Machine learning paradigms: Applications of learning and analytics in intelligent systems
Ano (publicação definitiva)
Mais Informação
Web of Science®

Esta publicação não está indexada na Web of Science®


Esta publicação não está indexada na Scopus

Google Scholar

N.º de citações: 19

(Última verificação: 2023-11-25 13:12)

Ver o registo no Google Scholar

The protection of critical engineering infrastructures is vital to today’s so- ciety, not only to ensure the maintenance of their services (e.g., water supply, energy production, transport), but also to avoid large-scale disasters. Therefore, technical and financial efforts are being continuously made to improve the safety control of large civil engineering structures like dams, bridges and nuclear facilities. This con- trol is based on the measurement of physical quantities that characterize the struc- tural behavior, such as displacements, strains and stresses. The analysis of monitor- ing data and its evaluation against physical and mathematical models is the strongest tool to assess the safety of the structural behavior. Commonly, dam specialists use multiple linear regression models to analyze the dam response, which is a well- known approach among dam engineers since the 1950s decade. Nowadays, the data acquisition paradigm is changing from a manual process, where measurements were taken with low frequency (e.g., on a weekly basis), to a fully automated process that allows much higher frequencies. This new paradigm escalates the potential of data analytics on top of monitoring data, but, on the other hand, increases data quality issues related to anomalies in the acquisition process. This chapter presents the full data lifecycle in the safety control of large-scale civil engineering infrastructures (focused on dams), from the data acquisition process, data processing and storage, data quality and outlier detection, and data analysis. A strong focus is made on the use of machine learning techniques for data analysis, where the common multiple linear regression analysis is compared with deep learning strategies, namely recur- rent neural networks. Demonstration scenarios are presented based on data obtained from monitoring systems of concrete dams under operation in Portugal.
  • Ciências da Computação e da Informação - Ciências Naturais
  • Engenharia Civil - Engenharia e Tecnologia

Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.