Ciência-IUL
Publicações
Descrição Detalhada da Publicação
Data-driven insights to reduce uncertainty from disruptive events in passenger railways
Título Revista
Public Transport
Ano (publicação definitiva)
2024
Língua
Inglês
País
Alemanha
Mais Informação
--
Web of Science®
Esta publicação não está indexada na Web of Science®
Scopus
Esta publicação não está indexada na Scopus
Google Scholar
Esta publicação não está indexada no Google Scholar
Abstract/Resumo
This study investigates the predictive modeling of the impact of disruptive events on passenger railway systems, using real data from the Portuguese main operator, Comboios de Portugal. We develop models using neural networks and decision trees, using key features such as the betweenness centrality indicator, railway track, time of day, and the train service group. Conclusively, these attributes significantly predict the impact on the proposed models. The research reveals the superior performance of neural network models, such as convolutional neural networks and recurrent neural networks, in smaller data sets, while decision tree models, particularly random forest, stand out in larger data sets. The findings of this study unveil new attributes that can be employed as predictors. Additionally, they confirm, within this study's context, the effectiveness of certain traits previously recognized in the literature for mitigating the uncertainty associated with the uncertainty of the impact of disruptive events in passenger railway systems.
Agradecimentos/Acknowledgements
--
Palavras-chave
Disruptive Events,Railway Systems,Neural Networks,Decision tree
Classificação Fields of Science and Technology
- Ciências da Computação e da Informação - Ciências Naturais
- Economia e Gestão - Ciências Sociais
Registos de financiamentos
Referência de financiamento | Entidade Financiadora |
---|---|
UIDB/04466/2020 | Fundação para a Ciência e Tecnologia (FCT) |
UIDP/04466/2020 | Fundação para a Ciência e Tecnologia (FCT) |
Contribuições para os Objetivos do Desenvolvimento Sustentável das Nações Unidas
Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.