Artigo não publicado nas atas da conferência
Enabling bookings cancellation prediction with data science
Nuno Miguel da Conceição António (António, N.); Ana de Almeida (Almeida, A.); Luís Nunes (Nunes, L.);
Título Evento
4th World Research Summit for Tourism and Hospitality
Ano (publicação definitiva)
2017
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®

Esta publicação não está indexada na Web of Science®

Scopus

Esta publicação não está indexada na Scopus

Google Scholar

N.º de citações: 0

(Última verificação: 2024-12-22 07:02)

Ver o registo no Google Scholar

Abstract/Resumo
Booking cancellations severely impacts demand-management decisions by limiting the production of accurate forecasts, a critical tool for revenue management performance. To soften limitations, hotels implement rigid cancellation policies and overbooking strategies (Smith, Parsa, Bujisic, & van der Rest, 2015; Talluri & Van Ryzin, 2005), which later can have a negative impact on revenue, on social reputation, and damage the hotel business performance. Most of the studies on the prediction of booking cancellations view it as a regression problem (to forecast the total number of cancellations) and not as a classification problem (predict which bookings are likely to cancel) (Antonio, Almeida, & Nunes, 2017, 2016). Although Morales & Wang (2010) stated that “it is hard to imagine that one can predict whether a booking will be cancelled or not with high accuracy” (p. 556), with the application of Data Science tools like machine learning, statistics, data mining and data visualization, we can now demonstrate that this assertion is no longer valid. Using data from four hotels’ Property Management Systems (PMS), this study shows that it is possible to build models that predict, with high accuracy, which bookings are likely to be cancelled and, with that, calculate the net demand for each future date in a research environment. Moreover, that it is possible to implement it in a production environment. After deploying a working prototype in two hotels, the preliminary results demonstrate its viability for real work environment applications and its importance as a valuable tool for room pricing and inventory allocation optimization decisions.
Agradecimentos/Acknowledgements
--
Palavras-chave
Revenue management,Predictive analytics,Forecasting,Machine learning
  • Ciências da Computação e da Informação - Ciências Naturais
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UID/MULTI/0446/2013 Fundação para a Ciência e a Tecnologia
UID/EEA/50008/2013 Fundação para a Ciência e a Tecnologia

Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.