Publication in conference proceedings
Modelo preditivo das insolvências: O contributo da auditoria financeira externa
João M. Ilhéu (Ilhéu, J. M.); Raul Laureano (Laureano, R. M. S.); Márcia Santos (Santos, M. R. C.);
2022 17th Iberian Conference on Information Systems and Technologies (CISTI)
Year (definitive publication)
2022
Language
Portuguese
Country
United States of America
More Information
Web of Science®

This publication is not indexed in Web of Science®

Scopus

Times Cited: 0

(Last checked: 2024-11-21 12:43)

View record in Scopus

Google Scholar

Times Cited: 0

(Last checked: 2024-11-18 14:27)

View record in Google Scholar

Alternative Titles

(English) Predicting insolvencies: The contribution of the external financial audit

Abstract
Em Portugal, desde a crise financeira, o número de Pequenas e Médias Empresas (PME) que entram em insolvência é bastante elevado e preocupante pelos impactos que causam na economia e na sociedade. Embora já tenham sido desenvolvidos diversos modelos preditivos das insolvências cujos preditores são, essencialmente, a informação financeira, este tema ainda é crítico nos dias de hoje, pelo que é de enorme relevância continuar a investigar e a criar modelos com maior precisão que os anteriores. Deste modo, e como as demonstrações financeiras das empresas nem sempre transparecem a realidade económico-financeira das mesmas, o presente estudo avalia o impacto das características do auditor e o conteúdo da sua opinião na predição das insolvências. Para tal, recorre-se a técnicas de análise de dados mais avançadas, nomeadamente text mining e árvores de decisão com o algoritmo CART de forma a analisar as Certificações Legais de Contas (CLC)/Relatórios de Auditoria Financeira Externa (RAFE), entre os anos de 2016 e 2020, de uma amostra de 2.040 empresas, 1.020 não insolventes e 1.020 insolventes. Os resultados obtidos permitem identificar uma relação entre as características do auditor e o conteúdo da sua opinião e a insolvência das empresas, prevendo-se uma Percentagem de Exemplos Corretamente Classificados (PECC) de 93%. O principal contributo empírico desta investigação é gerar melhor conhecimento sobre a inviabilidade das empresas através da atividade de Auditoria Financeira Externa (AFE), recorrendo-se a novas técnicas nunca antes utilizadas em modelos preditivos.
Acknowledgements
À FCT, pelo apoio no âmbito dos projetos estratégicos: UID/GES/00315/2020, UIDB/04466/2020 e UIDP/04466/2020. Ao Instituto Politécnico de Setúbal [programa RAADRI].
Keywords
Insolvência,Auditoria financeira externa,Text mining,Árvores de decisão,Previsão
  • Economics and Business - Social Sciences
Funding Records
Funding Reference Funding Entity
UID/GES/00315/2020 Fundação para a Ciência e a Tecnologia
UIDP/04466/2020 Fundação para a Ciência e a Tecnologia
UIDB/04466/2020 Fundação para a Ciência e a Tecnologia
Related Projects

This publication is an output of the following project(s):

With the objective to increase the research activity directed towards the achievement of the United Nations 2030 Sustainable Development Goals, the possibility of associating scientific publications with the Sustainable Development Goals is now available in Ciência-IUL. These are the Sustainable Development Goals identified by the author(s) for this publication. For more detailed information on the Sustainable Development Goals, click here.