Artigo em revista científica Q1
Multi-objective evolutionary optimization for dimensionality reduction of texts represented by synsets
Iñaki Velez de Mendizabal (Velez de Mendizabal, I.); Vitor Basto-Fernandes (Basto-Fernandes, V.); Enaitz Ezpeleta (Ezpeleta, E.); Jose R. Mendez (Méndez, J. R.); Silvana Gómez-Meire (Gómez-Meire, S.); Urko Zurutuza (Zurutuza, U.);
Título Revista
PeerJ Computer Science
Ano (publicação definitiva)
2023
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®

N.º de citações: 1

(Última verificação: 2024-12-22 09:28)

Ver o registo na Web of Science®


: 0.3
Scopus

N.º de citações: 1

(Última verificação: 2024-12-15 01:13)

Ver o registo na Scopus


: 0.2
Google Scholar

N.º de citações: 1

(Última verificação: 2024-12-17 00:26)

Ver o registo no Google Scholar

Abstract/Resumo
Despite new developments in machine learning classification techniques, improving the accuracy of spam filtering is a difficult task due to linguistic phenomena that limit its effectiveness. In particular, we highlight polysemy, synonymy, the usage of hypernyms/hyponyms, and the presence of irrelevant/confusing words. These problems should be solved at the pre-processing stage to avoid using inconsistent information in the building of classification models. Previous studies have suggested that the use of synset-based representation strategies could be successfully used to solve synonymy and polysemy problems. Complementarily, it is possible to take advantage of hyponymy/hypernymy-based to implement dimensionality reduction strategies. These strategies could unify textual terms to model the intentions of the document without losing any information (e.g., bringing together the synsets “viagra”, “ciallis”, “levitra” and other representing similar drugs by using “virility drug” which is a hyponym for all of them). These feature reduction schemes are known as lossless strategies as the information is not removed but only generalised. However, in some types of text classification problems (such as spam filtering) it may not be worthwhile to keep all the information and let dimensionality reduction algorithms discard information that may be irrelevant or confusing. In this work, we are introducing the feature reduction as a multi-objective optimisation problem to be solved using a Multi-Objective Evolutionary Algorithm (MOEA). Our algorithm allows, with minor modifications, to implement lossless (using only semantic-based synset grouping), low-loss (discarding irrelevant information and using semantic-based synset grouping) or lossy (discarding only irrelevant information) strategies. The contribution of this study is two-fold: (i) to introduce different dimensionality reduction methods (lossless, low-loss and lossy) as an optimization problem that can be solved using MOEA and (ii) to provide an experimental comparison of lossless and low-loss schemes for text representation. The results obtained support the usefulness of the low-loss method to improve the efficiency of classifiers.
Agradecimentos/Acknowledgements
--
Palavras-chave
Spam filtering,Synset-based representation,Semantic-based feature reduction,Multi-bjective evolutionary algorithms
  • Ciências da Computação e da Informação - Ciências Naturais
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UIDB/04466/2020 Fundação para a Ciência e a Tecnologia
ED431C 2022/03- GRC Conselleria de Cultura, Educación e Universidade of Xunta de Galicia
IT1676-22 Universities and Research of the Basque Country
UIDP/04466/2020 Fundação para a Ciência e a Tecnologia
Projetos Relacionados

Esta publicação é um output do(s) seguinte(s) projeto(s):

Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.