Ciência-IUL
Publicações
Descrição Detalhada da Publicação
Procedia Computer Science
Ano (publicação definitiva)
2023
Língua
Inglês
País
Países Baixos (Holanda)
Mais Informação
Web of Science®
Esta publicação não está indexada na Web of Science®
Scopus
Esta publicação não está indexada na Scopus
Google Scholar
Abstract/Resumo
This project describes a suggested prototype to carry out the automatic classification of requests from a Port Help Desk. It intents to ascertain if the implementation of this framework is viable for this sector. For this purpose different models were employed, such as SVM, Decision Tree, Random Forest, LSTM, BERT and a SVM hierarchical model. To verify their efficiency these models were evaluated using Precision, Recall and F1-Score metrics. We obtained F1-Scores of 94.36% and 92.48% when classifying the request's category and group respectively. A F1-Score of 93.41% while using a SVM model for category classification when employing a hierarchical classification architecture.
Agradecimentos/Acknowledgements
--
Palavras-chave
Help desk,NLP,Request classification,Machine learning
Classificação Fields of Science and Technology
- Ciências da Computação e da Informação - Ciências Naturais
- Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
Contribuições para os Objetivos do Desenvolvimento Sustentável das Nações Unidas
Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.