Artigo em revista científica Q1
SDRS: a new lossless dimensionality reduction for text corpora
Iñaki Velez de Mendizabal (De Mendizabal, I. V.); Vitor Basto-Fernandes (Basto-Fernandes, V.); Enaitz Ezpeleta (Ezpeleta, E,); Jose R. Mendez (Méndez, J. R.); Urko Zurutuza (Zurutuza, U.);
Título Revista
Information Processing and Management
Ano (publicação definitiva)
2020
Língua
Inglês
País
Reino Unido
Mais Informação
Web of Science®

N.º de citações: 7

(Última verificação: 2024-11-18 09:42)

Ver o registo na Web of Science®


: 0.2
Scopus

N.º de citações: 7

(Última verificação: 2024-11-13 06:58)

Ver o registo na Scopus


: 0.2
Google Scholar

N.º de citações: 7

(Última verificação: 2024-11-18 14:11)

Ver o registo no Google Scholar

Abstract/Resumo
In recent years, most content-based spam filters have been implemented using Machine Learning (ML) approaches by means of token-based representations of textual contents. After introducing multiple performance enhancements, the impact has been virtually irrelevant. Recent studies have introduced synset-based content representations as a reliable way to improve classification, as well as different forms to take advantage of semantic information to address problems, such as dimensionality reduction. These preliminary solutions present some limitations and enforce simplifications that must be gradually redefined in order to obtain significant improvements in spam content filtering. This study addresses the problem of feature reduction by introducing a new semantic-based proposal (SDRS) that avoids losing knowledge (lossless). Synset-features can be semantically grouped by taking advantage of taxonomic relations (mainly hypernyms) provided by BabelNet ontological dictionary (e.g. “Viagra” and “Cialis” can be summarized into the single features “anti-impotence drug”, “drug” or “chemical substance” depending on the generalization of 1, 2 or 3 levels). In order to decide how many levels should be used to generalize each synset of a dataset, our proposal takes advantage of Multi-Objective Evolutionary Algorithms (MOEA) and particularly, of the Non-dominated Sorting Genetic Algorithm (NSGA-II). We have compared the performance achieved by a Naïve Bayes classifier, using both token-based and synset-based dataset representations, with and without executing dimensional reductions. As a result, our lossless semantic reduction strategy was able to find optimal semantic-based feature grouping strategies for the input texts, leading to a better performance of Naïve Bayes classifiers.
Agradecimentos/Acknowledgements
--
Palavras-chave
Spam filtering,Token-based representation,Synset-based representation,Semantic-based feature reduction,Multi-objective evolutionary algorithms
  • Ciências da Computação e da Informação - Ciências Naturais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UIDP/04466/2020 Fundação para a Ciência e a Tecnologia
UIDB/04466/2020 Fundação para a Ciência e a Tecnologia

Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.