Publicação em atas de evento científico
Digital Tools for the Prevention of Dropout and Academic Failure: a Case Study of a Portuguese University
António Luís Lopes (Lopes, A. L.); Rosário Mauritti (Mauritti, R); Susana da Cruz Martins (Martins, SC); Sónia Pintassilgo (Pintassilgo, S.); Carla Matias (Matias, C.); Sílvia José (José, S.);
16th International Conference on Education and New Learning Technologies
Ano (publicação definitiva)
2024
Língua
Inglês
País
Espanha
Mais Informação
Web of Science®

Esta publicação não está indexada na Web of Science®

Scopus

Esta publicação não está indexada na Scopus

Google Scholar

N.º de citações: 0

(Última verificação: 2024-09-07 04:05)

Ver o registo no Google Scholar

Abstract/Resumo
Concern for the academic success of an increasingly diverse student body is receiving greater national and global attention in higher education. Given the increasing exigencies and evolving challenges that students now face, higher education institutions are called upon to develop multifaceted solutions that allow for the identification and prevention of academic pathways that may put their students at risk of failing or dropping out. This paper presents the results of a trial carried out at a Portuguese public university involving the development of digital tools, using machine learning models to help bolster efforts aimed at mitigating the risk of dropout and failure in higher education. From the outset, this trial has been built on interdisciplinary cooperation between specialists within the social sciences, information systems and information technology as well as between teachers, students, and various university departments (Educational Management, Social Action, Soft Skills Lab, Pedagogical Council, Computer Science, Information Systems and Quality Management). The creation of these tools is mainly based on the definition and implementation of an internal information system (Fenix) currently in the testing phase.
Agradecimentos/Acknowledgements
--
Palavras-chave
Machine learning models,alarm systems,dropout,higher education students.
  • Ciências da Computação e da Informação - Ciências Naturais
  • Ciências da Educação - Ciências Sociais
Registos Associados

Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.