Artigo em revista científica Q1
Insights from sentiment analysis to leverage local tourism business in restaurants
Yu Ting (Ting, Y.); Sérgio Moro (Moro, S.); Paulo Rita (Rita, P.); Cristina Oliveira (Oliveira, C.);
Título Revista
International Journal of Culture, Tourism, and Hospitality Research
Ano (publicação definitiva)
2022
Língua
Inglês
País
Reino Unido
Mais Informação
Web of Science®

N.º de citações: 7

(Última verificação: 2024-12-22 13:52)

Ver o registo na Web of Science®


: 2.6
Scopus

N.º de citações: 9

(Última verificação: 2024-12-21 18:16)

Ver o registo na Scopus


: 1.2
Google Scholar

N.º de citações: 17

(Última verificação: 2024-12-22 16:33)

Ver o registo no Google Scholar

Abstract/Resumo
Purpose: Social media has become the main venue for users to express their opinions and feelings, generating a vast number of available and valuable data to be scrutinized by researchers and marketers. This paper aims to extend previous studies analyzing social media reviews through text mining and sentiment analysis to provide useful recommendations for management in the restaurant industry. Design/methodology/approach: The Lexalytics, a text mining artificial intelligence tool, is applied to analyze the text of the online reviews of the restaurants in a touristic Dutch village extracted from the most frequently used social media platforms focusing on the four restaurant quality factors, namely, food and beverage, service, atmosphere and value. Findings: The findings of this research are presented by the identified key themes with comparisons of the customers’ review sentiment between a selected restaurant, Zwaantje, vis-à-vis its bench-mark restaurants set by a specific approach under the abovementioned quality dimensions, in which the food and beverage and service are the most commented by customers. Results demonstrate that text mining can generate insights from different aspects and that the proposed approach is valuable to restaurant management. Originality/value: The paper provides a relatively big scale in numbers and resources of social media reviews to further explore the most important service dimensions in the restaurant industry in a specific tourist area. It also offers a useful framework to apply the text mining business intelligence tool by comparison of peers for local small business restaurant practitioners to improve their management skills beyond manually reading social media reviews.
Agradecimentos/Acknowledgements
--
Palavras-chave
Giethoorn,Lexalytics,Online reviews,Restaurant business,Sentiment classification,Social media,Text mining
  • Economia e Gestão - Ciências Sociais
  • Outras Ciências Sociais - Ciências Sociais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UIDB/04152/2020 Fundação para a Ciência e a Tecnologia
UIDB/04466/2020 Fundação para a Ciência e a Tecnologia

Com o objetivo de aumentar a investigação direcionada para o cumprimento dos Objetivos do Desenvolvimento Sustentável para 2030 das Nações Unidas, é disponibilizada no Ciência-IUL a possibilidade de associação, quando aplicável, dos artigos científicos aos Objetivos do Desenvolvimento Sustentável. Estes são os Objetivos do Desenvolvimento Sustentável identificados pelo(s) autor(es) para esta publicação. Para uma informação detalhada dos Objetivos do Desenvolvimento Sustentável, clique aqui.